RACE for 203C

Ground Source Heat Pump Systems for Sustainable Heating and Cooling

Ground source heat pumps > peak electricity demand, urban heat island, embodied carbon

- Background in Australia
 - Fairwater Living Laboratory residential
 - 0 Commercial building air source heat pump retrofits plant room space constraints
- Background from overseas
 - 0 USA
 - o Europe
- Subsurface Urban heat Island and Underground Climate Change

Fairwater Living Lab - residential heating/cooling

- \$1.7M over 3 years (completed Jun22)
- Residential precinct in Western Sydney (Endeavour Energy network area), former Ashlar Golf Course, Blacktown, 38 hectares
- 6 Star Green Star rating for 800 homes
- 40 study homes, detached and semi-detached dwellings
- GeoAir Geothermal HVAC Ducted A/C from QPS Geothermal / ActronAir, 80 m deep boreholes
- 51 dB operating noise (no external condenser units)
- Deep hole direct exchange (DHDX), R410A refrigerant, GWP of 2,088

Air conditioning – 37-42% of annual electricity use

With GSHP

Peak demand	↓3 kW/home
lectricity use	\downarrow 21% > \$238/year saving
GHG saving	\downarrow 0.9 t CO ₂ -e/home/year

- Solar PV↑ electricity use↓ self sufficiency↓ self-consumption
- **COVID** later morning peak + increased 10am-3pm use

Remaining questions

- GSHP ducted system > over-reliance?
- Solar PV owners
- User behaviour + occupant preferences

Direct geothermal – aquatic centres

Photo - Gippsland Regional Aquatic Centre (GRAC) in Traralgon, Victoria

Other -

Other projects

- Metro Tunnel Project, Melbourne
- Yanderra Shallow Geothermal Systems Demonstration (ARENA) – poultry farm
- Arthur Boyd National Gallery and Plumbing Industry Climate Action Centre
- Parliament of Victoria
- Rivergum Residential Treatment Centre (Victoria)
- Sydney Light Rail Electrical Substation Cooling
- Australian War Memorial
- Jan 2023 capacity
 - 36 MW_t direct use geothermal
 - 71 MW_t GSHP

Source: Beardsmore et al, 2023, Country Update – Australia, Proceedings World Geothermal Congress 2023, Beijing, China, October 8-13, 2023

Main benefit – $33\% \downarrow$ grid cost and total emissions reduction - <u>https://www.osti.gov/biblio/2224191</u> Source: US DOE <u>https://www.energy.gov/eere/geothermal/geothermal-heat-pumps</u>

Europe - Geothermal District Heat & Cooling

Source: Federation of European Heating, Ventilation and Air Conditioning Associations https://www.rehva.eu/rehva-journal/chapter/geothermal-energy-use-in-the-nordic-countries

Fifth-generation district heating and cooling systems (5GDHC)

RACE for 2030

Source: https://thefifthestate.com.au/columns/spinifex/are-district-energy-systems-finally-ready-for-prime-time-in-australia/

European Research

• Simone Buffa, Marco Cozzini, Matteo D'Antoni, Marco Baratieri, Roberto Fedrizzi (2019) 5th generation district heating and cooling systems: A review of existing cases in Europe, Renewable and Sustainable Energy Reviews, Volume 104, 504-522, DOI: <u>10.1016/j.rser.2018.12.059</u>

European Research

• Jonas Lindhe, Saqib Javed, Dennis Johansson & Hans Bagge (2022) A review of the current status and development of 5GDHC and characterization of a novel shared energy system (SES), Science and Technology for the Built Environment, 28:5, 595-609, DOI: 10.1080/23744731.2022.2057111

Thermal shared energy system (SES)

ectogrid[™] at Medicon Village, Lund, Sweden

Subsurface Urban Heat Island > Underground Climate Change

Subsurface Measurements in Western Sydney.

Surface – Western Sydney max of 85°C – playground

Surface temperature (playground) Western Sydney - 2020

Subsurface – Western Sydney max of 38°C - 25m below surface

Measured data – from WSP

Asal Bidarmaghz, Energy Geostructures Research Group, UNSW

Subsurface Urban Heat Island > Underground Climate Change

Subsurface Temperature Mapping of Kensington, Chelsea and Westminster, London, UK

Max of 6°C temperature increase in the subsurface

• Supply of **50% to 75%** of total energy (gas) demand in the area.

• Up to **33%** saving in CO₂ emissions

Asal Bidarmaghz, Energy Geostructures Research Group, UNSW

Subsurface Urban Heat Island > Underground Climate Change

Subsurface Temperature Mapping of Cardiff, Wales.

• Up to **75%** saving in CO₂ emissions

RACE for

And more

Makasis, Bidarmaghz et. al., 2022

Several German cities (Menberg, et. al., (2013)

Subsurface Urban Heat Island and Energy Opportunities

Urban subsurface heat islands will impact the above/underground climate in various ways:

- Temperature **increase** in **pavements** and other urban surfaces
- Above and underground structural instability
- Change in **groundwater** quality and quantity
- **Changes in efficiency** to underground **ventilation**/air conditioning
- Thermal **discomfort** in **underground** spaces (passengers, workers, etc)

Urban Subsurface Heat Island and Energy Opportunities

Subsurface heat island can be turned into thermal energy for heating/cooling and the hot water supply of buildings.

This will be achieved via ground source heat pump systems.

Economic, Environmental and Health Benefits – example

Harnessing Subsurface Heat Island via GSHP system will provide:

- Concurrent **heating** and **cooling**.
- Perfect for spaces with high energy demand.
 - Schools, hospital, shopping centres, sport centres.
- Proven to effectively Mitigate SUHI.
- Improve stability and serviceability of underground infrastructures.

E.g., 3120 schools in NSW switching from fossil fuel to shallow geothermal energy will save:

- **\$343 Mil/year** on energy consumption
- **1.9Mil** tonne CO₂/year
- **400/year** fewer climate related deaths

RACE for 2030 Project Summary:

Project Objectives:

- Enhance confidence in GSHP (Ground Source Heat Pump) design and installation.
- Gain a better understanding of spatio-temporal thermal energy potential in the shallow subsurface.

Environmental Benefits:

- Investigate the resultant environmental benefits of switching to GSHP systems.
- Focus on thermal energy demand and subsurface energy availability.

Matching Energy Demand with Potential:

- Identify areas with the highest energy demand in cities.
- Address locations experiencing energy poverty/ urban heat island (UHI) impacts

RACE for 2030 Project Summary:

Quantify outcomes related to the project, including:

- \square CO₂ emission reduction.
- Peak electricity demand reduction.
- Urban Heat Island (UHI) effect benefit.
- Health benefits from reduce UHI.

Large-Scale Geothermal Heating and Cooling:

- Explore the feasibility of implementing large-scale geothermal heating and cooling systems.
 Focus on Deprived Urban Zones:
- Specifically target deprived urban zones for the implementation of GSHP systems.

