16 February 2024

Anna Skarbek

CEO, Climateworks Centre

Accelerating the energy transition

Accelerating implementation of net zero-aligned infrastructure through policies and precincts

About Climateworks Centre

We are climate transition specialists, working with decisionmakers in Australia, Southeast Asia and the Pacific who have the power to reduce emissions at scale.

We focus on net zero emissions pathways, policies and practice.

. ...

Operating from Australia and Indonesia

Working in partnership Climateworks Centre is an independent not-for-profit operating within Monash University

MONASH University MONASH SUSTAINABLE DEVELOPMENT INSTITUTE

Accelerating the transition requires systems thinking

Our approach:

AusTIMES was developed by Climateworks and CSIRO based on the TIMES model from the International Energy Agency.

Our model shows how the Australian economy can decarbonise at the lowest cost.

Each update has lower residual emissions in 2050. The 1°5Caligned path achieves net zero emissions before 2040

- In 2014, Australia's first Pathways to Deep Decarbonisation in 2050 was published by Climateworks & ANU with CSIRO, solving for net zero 2050
- In 2020, Decarbonisation Futures, updated this and produced the first explicitly Paris-aligned emissions trajectories and pathways for Australia, solving for 2°C and 1.5°C
- In 2023, *Decarbonisation scenarios* are our third major public release on economy-wide decarbonisation pathways for Australia, with two possible scenarios, 1.5°C and well-below-2°C (1.8°C).

There have been some major developments since our 2020 scenarios Hydrogen is better understood and more accepted as a potential solution for hard to abate sectors.

The policy context has shifted. Australia has committed to net zero emissions by 2050, and there is more action and commitment globally.

There is a growing consensus on the need to aim for **1.5°C rather than 2°C** to avoid the worst effects of climate change.

Cost-effective decarbonisation needs action across all sectors, and ~60-85% by 2035

Emissions by sector for 1.5°C (67%) scenario

Emissions by sector for well-below-2°C (67%) scenario

CLIMATEWORKS CENTRE

Rapid decarbonisation of the electricity system is central to both scenarios

- In both scenarios, renewable electricity generation grows to 83–90 per cent share of generation by 2030. This increases to nearly 100 per cent by 2050.
- Renewable electricity generation capacity, currently around 55 GW, increases in both scenarios to 137–151 GW by 2030 and 363–398 GW by 2050.

Electricity generation mix for 1.5°C scenario

Insights for transport

	Trans	port bench	marks		
Emissi Paris-a	ons benchm alignment	nark for	EV up	take benchm	nark
Year	Well- below-2°C (67%) scenario	1.5°C (67%) scenario	Year	Well- below-2°C (67%) scenario	1.5°C (67%) scenario
2030	1% below current levels	5% below current levels	2030	56% of new car sales in 2030	73% of new car sales in 2030
2050	90% below current levels	90% below current levels	2050	100% of new car sales in 2050	100% of new car sales in 2050

Insights for buildings

Buildings benchmarks

Emissions benchmark for Paris-alignment

Year	Well- below-2°C (67%) scenario	1.5°C (67%) scenario
2030	33% below current levels	36% below current levels
2050	94% below current levels	98% below

- Gas use phases out of buildings in the 2030s
- Housing energy efficiency improves by 41 per cent by 2050 compared to today's levels

Insights for industry

Industry benchmarks

Emissions benchmark for Paris-alignment

Year	Well- below-2°C (67%) scenario	1.5°C (67%) scenario
2030	32% below current levels	46% below current levels
2050	54% below current levels	67% below current levels

Australian Industry Energy Transitions Initiative findings show more is possible

	Iron and steel	Aluminium	Other metals	Chemicals	LNG
	I		Q	÷Z	
nissions reduction*	99%	98%	90%	96%	91%**
chnology Investment	A\$19.5b	A\$36.0b	A\$9.2b	A\$28.3b***	A\$39.6b
newable electricity quired	29 TWh/yr	44 TWh/yr	26 TWh/yr	10 TWh/yr	6 TWh/yr
drogen required	480,000t/yr	12,000 t/yr	26,000 t/yr	205,000 t/yr	
issions reductions are findings re 'Coordinated action scenario' based on 2020 levels				""including expenditure on hydrogen	"Including a 73% reduction in LNG exports between 2020-50
ustralian Industry Energy T	ransitions Initiative, convened b	by Climateworks Centre and Clin	nate-KIC Australia		

Major policy		
processes are		
happening now		
NDC with 2035 target due 2025	Sectoral pathways	Sectoral plans
Climate-related financial disclosure	Credible transition plans	

CLIMATEWORKS CENTRE

Applying these goals in net zero industrial precincts (NZIPs / REIPs) can get it done

Clusters of industrial businesses

Sharing enabling infrastructure

Access to green hydrogen production

Coordinating govt investment funds with net zero pathway criteria in all precincts

Net zero targets for industrial regions was a call of the Australian Industry Energy Transition Initiative

Australian Industry ETI supply chains

17.3%

Contributed to Australia's GDP

Generated in exports

~414,000

People employed

Australian Industry ETI supply chains

Rest of industry

Rest of the economy

Emissions based on 2020 levels. Industry emissions include scope 1 and 2. Australia's annual emissions

Iron and steel Technology deployment timeline

This chart shows the timeline of implementation that the model finds to be the least cost pathway, based on technology assumptions and other changes across the Australian economy. Note: There are other technologies that may be considered, for example, H2-DRI-EAF is an alternative steelmaking option using magnetite ores being investigated for deployment in Australia.

Aluminium

Technology deployment timeline

45 Aluminium smelting Fossil fuel generated electricity for smelting 40 Switch to renewable electricity for smelting Aluminium recycling 35 Inert anodes Alumina refining Mechanical vapour recompression for digestion 30 **Electric bollers for digestion** Emissions (MtCO₂e) Gas use in calcination 25 Carbon capture and storage for gas use in calcination Hydrogen calcination 20 **Electric calcination Bauxite mining** 15 **Electrification of mining Diesel powered haulage** Blodlesel 10 Battery electric trucks + trolley assists Fuel cell electric vehicles 5 98% reduction in The shaded area shows emissions over time. emissions by 2050 0 2020 2025 2030 2035 2040 2045 2050

This chart shows the timeline of implementation that the model finds to be the least cost pathway, based on technology assumptions and other changes across the Australian economy.

Other metals Technology

deployment timeline

This chart shows the timeline of implementation that the model finds to be the least cost pathway, based on technology assumptions and other changes across the Australian economy.

Other metals Technology

deployment timeline

This chart shows the timeline of implementation that the model finds to be the least cost pathway, based on technology assumptions and other changes across the Australian economy.

Chemicals Technology deployment timeline

This chart shows the timeline of implementation that the model finds to be the least cost pathway, based on technology assumptions and other changes across the Australian economy. More than twice as much investment goes into the energy system than the industrial facilities

Five enablers of 1.5°C-aligned net zero energy & industry

Set a strong, clear, enduring <u>framework with a net zero emissions goal</u> to align industry, finance and government

Transition to the large-scale, cost-competitive, renewable energy system of the future

Accelerate development and demonstration of the <u>emerging technologies</u> needed

Drive <u>deployment of low-carbon solutions</u> across the economy, reduce barriers and support investment towards the transition

Develop integrated <u>net zero emissions industrial regions</u>, supply chains and energy network solutions

Thank you for your interest, and action.

Anna Skarbek, CEO Climateworks Centre CLIMATEWORKS CENTRE Level 27, 35 Collins Street

Melbourne Victoria 3000

+61 3 9902 0741 // info@climateworkscentre.org

www.climateworkscentre.org

Climateworks Centre was co-founded by Monash University and The Myer Foundation and works within the Monash Sustainable Development Institute

MONASH SUSTAINABLE DEVELOPMENT INSTITUTE

THE MYER Foundation