

# The role of hydrogen blending in Australian natural gas networks

Paul Medwell, Doug Proud, Adam Gee, Neil Smith, Alfonso Chinnici and Peter Ashman

ERICA State of Energy Research Conference – February 2024



## Chicken or egg?

### Metaphorical...



### Hydrogen analogy...



### Demand

## Hydrogen: supply or demand?



- Why produce hydrogen if there is not enough demand to cover costs?
- Why plan to use hydrogen if the fuel is not available at a low cost?

How to break cycle?

Hypothesis: blend hydrogen into natural gas (demand) Low-hanging fruit. Flexible and immediate customer-base.

Not a long-term solution, but a catalyst for hydrogen investment.



# Hydrogen: Swiss-army knife of decarbonisation

- Overwhelmed for choice
  - Energy panacea?
  - Niche applications?
  - Wait and see what eventuates

For hydrogen to have impact...

- Need SCALE
- Scale needs investment
- Investors need evidence



### Hydrogen investment

Global stock market index for hydrogen shares





5

## Gas blending – start with what is known

- Overwhelmed for choice
  - Most use-cases are "potential"
- KISS principle
  - Displace gas with gas
- Gas blending
  - Add some hydrogen to natural gas
    - •0 20% hydrogen

Not a long-term solution Catalyst for hydrogen projects

→ Get something happening





## Gas blending – the first step to hydrogen at scale

- Blending hydrogen with natural gas will not achieve net zero, but...
  - Leverages existing customer base
  - Re-use existing infrastructure
  - Tolerate variability in hydrogen supply
  - Reduces need for storage
  - Acceleration of the hydrogen industry
  - Builds skills and expertise
  - Builds public confidence
  - Builds investment

### Gas blending – the first step to hydrogen at scale

### We cannot eliminate gas tomorrow

- But we can blend hydrogen with natural gas tomorrow
- Alternative technologies are not available tomorrow at the required scale

### • Energy transition will take time, money and resources

- Blending just needs hydrogen production
- No new infrastructure, regulations, appliances, vehicles, technologies, etc.
- Blending will accelerate hydrogen production and build hydrogen capacity
  - Trojan horse to get hydrogen into the energy mix
  - Hydrogen can then be used to enable transition away from gas in the future

### **Production can be re-purposed**



## Scale of gas blending

Australian natural gas consumption: ~1600 PJ of energy per annum

[Australian Energy Update 2023, DCCEEW]

- Blending natural gas with 10% hydrogen (percentage on molar basis)
  - Energy basis is ~3%
  - Sponge for 400,000 tonnes of hydrogen per year 
    1.5 GW of hydrogen production
  - Variability and flexibility built into the network
- What are the consequences?
  - Most appliances can tolerate 10–20% hydrogen
  - Fits within current regulatory frameworks (e.g. Type A / B approvals)

### Heat radiation from flames with hydrogen

- Low radiant fraction
- Dependent on burner design and geometry



Source: Future Fuels CRC, RP1.4-03 / RP1.4-08

HAB (mm)



## Hydrogen blending – Type A appliances

- Most Type A (domestic) appliances will tolerate this level
- Open flued gas space heater...

|                       | Natural gas (NG) | 10% H <sub>2</sub> in NG | 21  |
|-----------------------|------------------|--------------------------|-----|
| CO, ppm               | 88.6             | 89.6                     | 82  |
| CO <sub>2</sub> , ppm | 50000            | 51000                    | 44  |
| CO/CO <sub>2</sub>    | 0.00018          | 0.00017                  | 0.0 |
| NO, ppm               | 13.0             | 12.0                     | 9.6 |
| NO <sub>2</sub> , ppm | 11.6             | 13.0                     | 14  |



### .7% H<sub>2</sub> in NG

- .9
- 000
- 00019

## Hydrogen blending – light back

- All devices (new and legacy) performed satisfactorily with up to 21.7% H<sub>2</sub>
- Light back is possible with misuse of manual igniter
  - Also possible with 0% H<sub>2</sub>

Source: Future Fuels CRC, RP1.4-05



# Hydrogen blending – light back in BBQ

- Thermal imaging camera from underneath barbeque
- Natural gas (left) and 21.7% H<sub>2</sub> (right)





### Source: Future Fuels CRC, RP1.4-05



## **Type B – summary of operation**

- Commercial burners (with no modification)
- Limiting behaviour when hydrogen concentration increases...

| Appliance/burner  | Max H <sub>2</sub> [vol%] | Reason/observation                |
|-------------------|---------------------------|-----------------------------------|
| AN burner         | 55                        | Light-back at low rate            |
| AN burner         | 80                        | Flame detection (flame rod)       |
| Package burner    | 99                        | Flame detection (flame rod) – po  |
| Air-heat burner   | 40–50                     | Overheating of burner (+ noise)   |
| Nozzle-mix burner | 100                       | No issues in flame detection or s |
| Radiant burner    | 40                        | High probability of light-back on |



ossibly lower (overheating)

stability

ignition

### **Techno-economic analysis**

- Gap exists between predicted  $H_2$  prices and cost parity with natural gas
- Alumina: predicted commodity price increase is negligible (0.01-3%)



## Summary

- Hydrogen has a lot of potential roles in decarbonisation
- Hydrogen installations at the scale needed are lagging
- Blending hydrogen with natural gas has the potential to "kick start" investment
- 10% hydrogen (~3% by energy) would be a sponge for 1.5 GW of production
- Appliances on the network should be mostly unaffected
- Gas blending enables a break in the chicken-or-egg (supply-or-demand) cycle
  - $\rightarrow$  Once the hydrogen production is there, it can be used for other purposes

### Perfection is the enemy of good



## Acknowledgements

### **Co-authors**

- Doug Proud
- Adam Gee
- Neil Smith
- Alfonso Chinnici
- Peter Ashman

### **Other collaborators:**

- Michael Evans
- Zhiwei Sun
- Shaun Chan

### **Research institutes**

- Institute for Sustainability, Energy and Resources
- The University of Adelaide

### **Funding bodies**

- Australian Research Council
- Future Fuels CRC
- Heavy-industry low-carbon (HILT) CRC

For further information...

paul.medwell@adelaide.edu.au